Electrochemical Determination of Drugs in Human Plasma Sample using a Modified Nanosensor

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Yasouj University, Yasouj, Iran

2 Tehran University of Medical Sciences, Tehran, Iran

Abstract

An extremely sensitive and selective electrochemical sensor based on anatase TiO2 nanosheet hierarchical spheres (TiO2NSHSs), Pt nanoparticles (PtNPs), carbon paste electrode (CPE) and 2,3-dihydro-2-(3,4-dihydroxyphenyl) quinazolin-4(1H)-one (DHP) for determination of isoprenaline (IP) in the presence of phenobarbital (PB) was developed. The excellent synergistic effect of TiO2NSHSs, PtNPs and DHP showed significantly enhanced electrocatalytic activity for IP and PB. In order to characterize the developed nanosensor, the scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS) and voltammetry were used. Electrochemical behavior of the DHP/PtNPs/TiO2NSHSs/CPE sensor studied using differential pulse voltammetry (DPV), cyclic voltammetry (CV) and EIS. Several effective parameters were investigated and optimized on the nanosensor response. The proposed sensor, under the optimized conditions, showed two linear dynamic ranges from 0.05- 20.0 µM and 20.0-900.0 µM with a low detection limit of 7.0 nmol.L −1 for IP determination. Finally, the modified sensor was employed to determine the analytes in human blood plasma with ±0.3% error. Validation of the proposed method was performed using high-performance liquid chromatography (HPLC).

Highlights

  • An extremely sensitive and selective electrochemical sensor developed.
  • The effect of TiO2NSHSs, PtNPs and DHP showed electrocatalytic activity of IP and PB enhanced.
  • Several effective parameters were investigated and optimized on the nanosensor response.
  • The sensor showed two linear dynamic ranges with a low detection limit for IP determination.
  • The modified sensor was employed to determine the analytes in human blood plasma.

Keywords


[1] Hosgood, J.R., Kimbrel, J.M.,  Protus, B.M.C., Grauer, P.A., 2016, Evaluation of Subcutaneous Phenobarbital Administration in Hospice Patients, American Journal of Hospice and Palliative Medicine, 33(3), 209–213. https://doi.org/10.1177/1049909114555157
[2] Bialer, M., Chemical properties of antiepileptic drugs (AEDs), Advanced drug delivery reviews, 64(10), 887–895. https://doi.org/10.1016/j.addr.2011.11.006
[3] Perucca, P., Gilliam, F.G., 2012, Adverse effects of antiepileptic drugs, The Lancet Neurology, 11(9), 792–802. https://doi.org/10.1016/S1474-4422(12)70153-9
[4] Yasiry, Z., Shorvon, S.D., 2012, How phenobarbital revolutionized epilepsy therapy: The story of phenobarbital therapy in epilepsy in the last 100 years, Epilepsia, 53(s8), 26–39. https://doi.org/10.1111/epi.12026
[5] Koufaris, C., Wright, J., Osborne, M., Currie, R.A., Gooderham, N.J., 2013, Time and dose-dependent effects of phenobarbital on the rat liver miRNAome, Toxicology, 314(2-3), 247–253. https://doi.org/10.1016/j.tox.2013.10.004
[6] Brodie, M.J., Kwan, P., 2012, Current position of phenobarbital in epilepsy and its future, Epilepsia, 53(s8), 40–46. https://doi.org/10.1111/epi.12027
[7] Asadi, M., Dadfarnia, S., Shabani, A.M.H., Abbasi, B., 2015, Simultaneous extraction and quantification of lamotrigine, phenobarbital, and phenytoin in human plasma and urine samples using solidified floating organic drop microextraction and high-performance liquid chromatography, Journal of Separation Science, 38(14), 2510–2516. https://doi.org/10.1002/jssc.201500237
[8] Lima, J.L.F.C., Montenegro, M.C.B.S.M., Da Silva, A.M.R., 1990, A phenobarbital ion-selective electrode without an inner reference solution, and its application to pharmaceutical analysis, Journal of Pharmaceutical and Biomedical Analysis, 8(8-12), 701–704. https://doi.org/10.1016/0731-7085(90)80106-Y
[9] Haque, A., Xu, X., Stewart, J.T., 1999, Determination of ephedrine, theophylline and phenobarbital in a tablet dosage form by capillary electrophoresis, Journal of Pharmaceutical and Biomedical Analysis, 21(5), 1063–1067. https://doi.org/10.1016/S0731-7085(99)00226-5
[10] Hasanzadeh, M., Pournaghi-Azar, M.H., Shadjou, N., Jouyban, A., 2014, Determination of diltiazem in the presence of timolol in human serum samples using a nanoFe3O4@GO modified glassy carbon electrode, RSC Advances, 4(93), 51734–51744. https://doi.org/10.1039/C4RA05989A
[11] Unal, D.N., Eksin, E., Erdem, A., 2018, Electrochemical determination of 6-thioguanine and its interaction with DNA oligonucleotides using disposable graphite pencil electrodes, Analytical Letters, 51(1-2), 265–278. https://doi.org/10.1080/00032719.2017.1338714
[12] Norouzi, P., Haji-Hashemi, H., Larijani, B., Aghazadeh, M., Pourbasheer, E., Ganjali, M.R., 2017, Application of new advanced electrochemical methods combine with nano-based materials sensor in drugs analysis, Current Analytical Chemistry, 13(1), 70-80.  https://doi.org/10.2174/1573411012666160601150841
[13] Thapliyal, N., Chiwunze, T.E., Karpoormath, R., Goyal, R.N., Patel, H., Cherukupalli, S., 2016, Research progress in electroanalytical techniques for determination of antimalarial drugs in pharmaceutical and biological samples, RSC advances, 6(62), 57580–57602. https://doi.org/10.1039/C6RA05025E
[14] Mahmoudi, E., Hajian, A., Rezaei, M., Afkhami, A., Amine, A., Bagheri, H., 2019, A novel platform based on graphene nanoribbons/protein capped Au-Cu bimetallic nanoclusters: Application to the sensitive electrochemical determination of bisphenol A, Microchemical Journal, 145, 242-251. https://doi.org/10.1016/j.microc.2018.10.044
[15] Zhao, H., Liu, F., Wu, S., Yang,  L., Zhang, Y.P.,  Li, C.P., 2017, Ultrasensitive electrochemical detection of Dicer1 3′UTR for the fast analysis of alternative cleavage and polyadenylation, Nanoscale, 9(12), 4272–4282.  https://doi.org/10.1039/C6NR09300K
[16] Wang, Z., Dai, Z., 2015, Carbon nanomaterial-based electrochemical biosensors: An overview, Nanoscale, 7(15),  6420–6431. https://doi.org/10.1039/C5NR00585J
[17] Liu, S., Zhang, J., Tu, W., Bao, J., Dai, Z.,  2014, Using ruthenium polypyridyl functionalized ZnO mesocrystals and gold nanoparticle dotted graphene composite for biological recognition and electrochemiluminescence biosensing, Nanoscale, 6(4), 2419–2425. https://doi.org/10.1039/C3NR05944H
[18] Yadav, M., Ganesan, V., Gupta, R., Yadav, D.K., Sonkar, P.K., 2019, Cobalt oxide nanocrystals anchored on graphene sheets for electrochemical determination of chloramphenicol, Microchemical Journal, 146, 881-887. https://doi.org/10.1016/j.microc.2019.02.025
[19] Yue, H.Y., Wu, P.F., Huang, S., Gao, X., Song, S.S., Wang, W.Q., Guo, X.R., 2019, Simultaneous electrochemical determination of levodopa and uric acid based on ZnS nanoparticles/3D graphene foam electrode, Microchemical Journal, 149, 103977. https://doi.org/10.1016/j.microc.2019.103977
[20] Veseli, A., Mullallari, F., Balidemaj, F., Berisha, L., Švorc, L., Arbneshi, T., 2019, Electrochemical determination of erythromycin in drinking water resources by surface modified screen-printed carbon electrodes, Microchemical Journal, 148, 412-418. https://doi.org/10.1016/j.microc.2019.04.086
[21] Ateş, A.K., Er, E., Çelikkan, H., Erk, N., 2019, The fabrication of a highly sensitive electrochemical sensor based on AuNPs@graphene nanocomposite: Application to the determination of antidepressant vortioxetine, Microchemical Journal, 148, 306-312. https://doi.org/10.1016/j.microc.2019.04.082
[22] Lin, C.A.J., Liedl, T., Sperling, R.A., Fernández-Argüelles, M.T., Costa-Fernández, J.M., Pereiro, R., Sanz-Medel, A., Chang, W.H., Parak, W.J., 2007, Bioanalytics and biolabeling with semiconductor nanoparticles (quantum dots), Journal of Materials Chemistry, 17, 1343–1346. https://doi.org/10.1039/B618902D
[23] Gill, R., Zayats, M., Willner, I., 2008, Semiconductor quantum dots for bioanalysis, Angewandte Chemie International Edition, 47, 7602–7625. https://doi.org/10.1002/anie.200800169
[24] Dumitriu, C., Popescu, M., Ungureanu, C., Pirvu, C., 2015, Antibacterial efficiencies of TiO2 nanostructured layers prepared in organic viscous electrolytes, Applied Surface Science, 341, 157–165. https://doi.org/10.1016/j.apsusc.2015.02.183
[25] Rahman, M.M., Alfonso, V.G., Fabregat-Santiago, F., Bisquert, J., Asiri, A.M., Alshehri, A.A., Albar, H.A., 2017, Hydrazine sensors development based on a glassy carbon electrode modified with a nanostructured TiO2 films by electrochemical approach, Microchimica Acta, 184, 2123–2129. https://doi.org/10.1007/s00604-017-2228-x
[26] Sun, W., Zhai, Z., Wang, D., Liu, S., Jiao, K., 2009, Electrochemistry of hemoglobin entrapped in a Nafion/nano-ZnO film on carbon ionic liquid electrode, Bioelectrochemistry, 74(2), 295–300. https://doi.org/10.1016/j.bioelechem.2008.11.001
[27] Wang, H., Liu, M., Yan, C., Bell, J., 2012, Reduced electron recombination of dye-sensitized solar cells based on TiO2 spheres consisting of ultrathin nanosheets with [001] facet exposed, Beilstein journal of nanotechnology, 3, 378-387. https://doi.org/10.3762/bjnano.3.44
[28] Islam, A., Anwarul Kabir Bhuiya, M., Saidul Islam, M., 2014, A Review on Chemical Synthesis Process of Platinum Nanoparticles, Asia Pacific Journal of Energy and Environment, 1(2), 107-121. https://doi.org/10.18034/apjee.v1i2.215
[29] Govindhan, M., Liu, Z., Chen, A., 2016, Design and Electrochemical Study of Platinum-Based Nanomaterials for Sensitive Detection of Nitric Oxide in Biomedical Applications, Nanomaterials, 6(11), 211. https://doi.org/10.3390/nano6110211
[30] Borisova, B., Sánchez, A., Jiménez-Falcao, S., Martín, M., Salazar, P., Parrado, C., Pingarrón, J.M., Villalonga, R., 2016, Reduced graphene oxide-carboxymethylcellulose layered with platinum nanoparticles/PAMAM dendrimer/magnetic nanoparticles hybrids. Application to the preparation of enzyme electrochemical biosensors, Sensors and Actuators B: Chemical,  232, 84–90. https://doi.org/10.1016/j.snb.2016.02.106
[31] Willinger, E., Tarasov, A., Blume, R., Rinaldi, A., Timpe, O., Massué, C., Scherzer, M., Noack, J., Schlögl, R., Willinger, M.G., 2017, Characterization of the Platinum-Carbon Interface for Electrochemical Applications, ACS Catalysis, 7(7), 4395–4407. https://doi.org/10.1021/acscatal.7b00614
[32] Liu, X., Chen, N., Han, B., Xiao, X., Chen, G., Djerdj, I., Wang, Y., 2015, Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH 3 detection with ultrahigh sensitivity, Nanoscale, 7, 14872–14880. https://doi.org/10.1039/C5NR03585F
[33] Gaikwad, N., Bhanoth, S., More, P.V., Jain, G.H., Khanna, P.K., 2014, Chemically designed Pt/PPy nano-composite for effective LPG gas sensor, Nanoscale, 6, 2746–2751. https://doi.org/10.1039/C3NR05375J
[34] Liu, L., Miao, P., Xu, Y., Tian, Z., Zou, Z., Li, G., 2010, Study of Pt/TiO2 nanocomposite for cancer-cell treatment, Journal of Photochemistry and Photobiology B: Biology, 98(3), 207–210. https://doi.org/10.1016/j.jphotobiol.2010.01.005
[35] Ding, Y., Wang, Y., Zhang, L., Zhang, H., Li, C.M., Lei, Y., 2011, Preparation of TiO2-Pt hybrid nanofibers and their application for sensitive hydrazine detection, Nanoscale, 3, 1149–1157. https://doi.org/10.1039/C0NR00773K
[36] Kasarevic-Popovic, Z., Behar, D., Rabani, J., 2004, Role of excess electrons in TiO2 nanoparticles coated with Pt in reduction reactions studied in radiolysis of aqueous solutions, The Journal of Physical Chemistry B, 108(52), 20291–20295.  https://doi.org/10.1021/jp045989g
[37] Choi, J.-H., Park, K.-W., Kwon, B.-K., Sung, Y.-E., 2003, Methanol Oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni Anode Electrocatalysts at Different Temperatures for DMFCs, Journal of The Electrochemical Society,  150(7), A973-A978. https://doi.org/10.1149/1.1581011
[38] Chang, L.Y., Lee, C.P.,  Huang, K.C., Wang, Y.C., Yeh, M.H., Lin, J.J., Ho, K.C., 2012, Facile fabrication of PtNP/MWCNT nanohybrid films for flexible counter electrode in dye-sensitized solar cells, Journal of Materials Chemistry, 22, 3185–3191. https://doi.org/10.1039/C2JM15614H
[39] Chen, J.S., Zhu, T., Yang, X.H., Yang, H.G., Lou, X.W., 2010, Top-down fabrication of α-Fe2O3 single-crystal nanodiscs and microparticles with tunable porosity for largely improved lithium storage properties, Journal of the American Chemical Society, 132(38), 13162–13164. https://doi.org/10.1021/ja1060438
[40] Zheng, L., Xiong, L., Sun, J., Li, J., Yang, S., Xia, J., 2008, Capping agent free synthesis of PtSn bimetallic nanoparticles with enhanced electrocatalytic activity and lifetime over methanol oxidation, Catalysis Communications, 9(5), 624–629. https://doi.org/10.1016/j.catcom.2007.06.017
[41] Razmi, H., Mohammad-Rezaei, R., 2013, Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: Application to sensitive glucose determination, Biosensors and Bioelectronics, 41, 498–504.  https://doi.org/10.1016/j.bios.2012.09.009
[42] Laviron, E., 1979, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 101(1), 19–28. https://doi.org/10.1016/S0022-0728(79)80075-3
[43] Geno, P.W., Ravichandran, K., Baldwin, R.P., 1985, Chemically modified carbon paste electrodes. Part IV. Electrostatic binding and electrocatalysis at poly(4-vinylpyridine)-containing electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 183(1-2), 155–166. https://doi.org/10.1016/0368-1874(85)85488-5
[44] Bard, A.J., Faulkner, L.R., 2001, Electrochemical Methods: Fundamentals and applications, 2nd Edition. John Wiley & Sons, Inc.,
[45] Hjemdahl, P., Martinsson, A., Larsson, K., 1986, Improvement of the isoprenaline infusion test by plasma concentration measurements, Life sciences, 39(7), 629–635.  https://doi.org/10.1016/0024-3205(86)90044-5
[46] Kishore, P., Rajnarayana, K., Reddy, M.S., Sagar, J.V., Krishna, D.R., 2003, Validated high performance liquid chromatographic method for simultaneous determination of phenytoin, phenobarbital and carbamazepine in human serum, Arzneimittelforschung, 53(11), 763–768. https://doi.org/10.1055/s-0031-1299826
[47] Franeta, J.T., Agbaba, D., Eric, S., Pavkov, S., Aleksic, M., Vladimirov, S., 2002, HPLC assay of acetylsalicylic acid, paracetamol, caffeine and phenobarbital in tablets, Il Farmaco, 57(9), 709–713. https://doi.org/10.1016/S0014-827X(02)01265-X