[1] Hosgood, J.R., Kimbrel, J.M., Protus, B.M.C., Grauer, P.A., 2016, Evaluation of Subcutaneous Phenobarbital Administration in Hospice Patients, American Journal of Hospice and Palliative Medicine, 33(3), 209–213. https://doi.org/10.1177/1049909114555157
[2] Bialer, M., Chemical properties of antiepileptic drugs (AEDs), Advanced drug delivery reviews, 64(10), 887–895. https://doi.org/10.1016/j.addr.2011.11.006
[3] Perucca, P., Gilliam, F.G., 2012, Adverse effects of antiepileptic drugs, The Lancet Neurology, 11(9), 792–802. https://doi.org/10.1016/S1474-4422(12)70153-9
[4] Yasiry, Z., Shorvon, S.D., 2012, How phenobarbital revolutionized epilepsy therapy: The story of phenobarbital therapy in epilepsy in the last 100 years, Epilepsia, 53(s8), 26–39. https://doi.org/10.1111/epi.12026
[5] Koufaris, C., Wright, J., Osborne, M., Currie, R.A., Gooderham, N.J., 2013, Time and dose-dependent effects of phenobarbital on the rat liver miRNAome, Toxicology, 314(2-3), 247–253. https://doi.org/10.1016/j.tox.2013.10.004
[6] Brodie, M.J., Kwan, P., 2012, Current position of phenobarbital in epilepsy and its future, Epilepsia, 53(s8), 40–46. https://doi.org/10.1111/epi.12027
[7] Asadi, M., Dadfarnia, S., Shabani, A.M.H., Abbasi, B., 2015, Simultaneous extraction and quantification of lamotrigine, phenobarbital, and phenytoin in human plasma and urine samples using solidified floating organic drop microextraction and high-performance liquid chromatography, Journal of Separation Science, 38(14), 2510–2516. https://doi.org/10.1002/jssc.201500237
[8] Lima, J.L.F.C., Montenegro, M.C.B.S.M., Da Silva, A.M.R., 1990, A phenobarbital ion-selective electrode without an inner reference solution, and its application to pharmaceutical analysis, Journal of Pharmaceutical and Biomedical Analysis, 8(8-12), 701–704. https://doi.org/10.1016/0731-7085(90)80106-Y
[9] Haque, A., Xu, X., Stewart, J.T., 1999, Determination of ephedrine, theophylline and phenobarbital in a tablet dosage form by capillary electrophoresis, Journal of Pharmaceutical and Biomedical Analysis, 21(5), 1063–1067. https://doi.org/10.1016/S0731-7085(99)00226-5
[10] Hasanzadeh, M., Pournaghi-Azar, M.H., Shadjou, N., Jouyban, A., 2014, Determination of diltiazem in the presence of timolol in human serum samples using a nanoFe3O4@GO modified glassy carbon electrode, RSC Advances, 4(93), 51734–51744. https://doi.org/10.1039/C4RA05989A
[11] Unal, D.N., Eksin, E., Erdem, A., 2018, Electrochemical determination of 6-thioguanine and its interaction with DNA oligonucleotides using disposable graphite pencil electrodes, Analytical Letters, 51(1-2), 265–278. https://doi.org/10.1080/00032719.2017.1338714
[12] Norouzi, P., Haji-Hashemi, H., Larijani, B., Aghazadeh, M., Pourbasheer, E., Ganjali, M.R., 2017, Application of new advanced electrochemical methods combine with nano-based materials sensor in drugs analysis, Current Analytical Chemistry, 13(1), 70-80. https://doi.org/10.2174/1573411012666160601150841
[13] Thapliyal, N., Chiwunze, T.E., Karpoormath, R., Goyal, R.N., Patel, H., Cherukupalli, S., 2016, Research progress in electroanalytical techniques for determination of antimalarial drugs in pharmaceutical and biological samples, RSC advances, 6(62), 57580–57602. https://doi.org/10.1039/C6RA05025E
[14] Mahmoudi, E., Hajian, A., Rezaei, M., Afkhami, A., Amine, A., Bagheri, H., 2019, A novel platform based on graphene nanoribbons/protein capped Au-Cu bimetallic nanoclusters: Application to the sensitive electrochemical determination of bisphenol A, Microchemical Journal, 145, 242-251. https://doi.org/10.1016/j.microc.2018.10.044
[15] Zhao, H., Liu, F., Wu, S., Yang, L., Zhang, Y.P., Li, C.P., 2017, Ultrasensitive electrochemical detection of Dicer1 3′UTR for the fast analysis of alternative cleavage and polyadenylation, Nanoscale, 9(12), 4272–4282. https://doi.org/10.1039/C6NR09300K
[16] Wang, Z., Dai, Z., 2015, Carbon nanomaterial-based electrochemical biosensors: An overview, Nanoscale, 7(15), 6420–6431. https://doi.org/10.1039/C5NR00585J
[17] Liu, S., Zhang, J., Tu, W., Bao, J., Dai, Z., 2014, Using ruthenium polypyridyl functionalized ZnO mesocrystals and gold nanoparticle dotted graphene composite for biological recognition and electrochemiluminescence biosensing, Nanoscale, 6(4), 2419–2425. https://doi.org/10.1039/C3NR05944H
[18] Yadav, M., Ganesan, V., Gupta, R., Yadav, D.K., Sonkar, P.K., 2019, Cobalt oxide nanocrystals anchored on graphene sheets for electrochemical determination of chloramphenicol, Microchemical Journal, 146, 881-887. https://doi.org/10.1016/j.microc.2019.02.025
[19] Yue, H.Y., Wu, P.F., Huang, S., Gao, X., Song, S.S., Wang, W.Q., Guo, X.R., 2019, Simultaneous electrochemical determination of levodopa and uric acid based on ZnS nanoparticles/3D graphene foam electrode, Microchemical Journal, 149, 103977. https://doi.org/10.1016/j.microc.2019.103977
[20] Veseli, A., Mullallari, F., Balidemaj, F., Berisha, L., Švorc, L., Arbneshi, T., 2019, Electrochemical determination of erythromycin in drinking water resources by surface modified screen-printed carbon electrodes, Microchemical Journal, 148, 412-418. https://doi.org/10.1016/j.microc.2019.04.086
[21] Ateş, A.K., Er, E., Çelikkan, H., Erk, N., 2019, The fabrication of a highly sensitive electrochemical sensor based on AuNPs@graphene nanocomposite: Application to the determination of antidepressant vortioxetine, Microchemical Journal, 148, 306-312. https://doi.org/10.1016/j.microc.2019.04.082
[22] Lin, C.A.J., Liedl, T., Sperling, R.A., Fernández-Argüelles, M.T., Costa-Fernández, J.M., Pereiro, R., Sanz-Medel, A., Chang, W.H., Parak, W.J., 2007, Bioanalytics and biolabeling with semiconductor nanoparticles (quantum dots), Journal of Materials Chemistry, 17, 1343–1346. https://doi.org/10.1039/B618902D
[23] Gill, R., Zayats, M., Willner, I., 2008, Semiconductor quantum dots for bioanalysis, Angewandte Chemie International Edition, 47, 7602–7625. https://doi.org/10.1002/anie.200800169
[24] Dumitriu, C., Popescu, M., Ungureanu, C., Pirvu, C., 2015, Antibacterial efficiencies of TiO2 nanostructured layers prepared in organic viscous electrolytes, Applied Surface Science, 341, 157–165. https://doi.org/10.1016/j.apsusc.2015.02.183
[25] Rahman, M.M., Alfonso, V.G., Fabregat-Santiago, F., Bisquert, J., Asiri, A.M., Alshehri, A.A., Albar, H.A., 2017, Hydrazine sensors development based on a glassy carbon electrode modified with a nanostructured TiO2 films by electrochemical approach, Microchimica Acta, 184, 2123–2129. https://doi.org/10.1007/s00604-017-2228-x
[26] Sun, W., Zhai, Z., Wang, D., Liu, S., Jiao, K., 2009, Electrochemistry of hemoglobin entrapped in a Nafion/nano-ZnO film on carbon ionic liquid electrode, Bioelectrochemistry, 74(2), 295–300. https://doi.org/10.1016/j.bioelechem.2008.11.001
[27] Wang, H., Liu, M., Yan, C., Bell, J., 2012, Reduced electron recombination of dye-sensitized solar cells based on TiO2 spheres consisting of ultrathin nanosheets with [001] facet exposed, Beilstein journal of nanotechnology, 3, 378-387. https://doi.org/10.3762/bjnano.3.44
[28] Islam, A., Anwarul Kabir Bhuiya, M., Saidul Islam, M., 2014, A Review on Chemical Synthesis Process of Platinum Nanoparticles, Asia Pacific Journal of Energy and Environment, 1(2), 107-121. https://doi.org/10.18034/apjee.v1i2.215
[29] Govindhan, M., Liu, Z., Chen, A., 2016, Design and Electrochemical Study of Platinum-Based Nanomaterials for Sensitive Detection of Nitric Oxide in Biomedical Applications, Nanomaterials, 6(11), 211. https://doi.org/10.3390/nano6110211
[30] Borisova, B., Sánchez, A., Jiménez-Falcao, S., Martín, M., Salazar, P., Parrado, C., Pingarrón, J.M., Villalonga, R., 2016, Reduced graphene oxide-carboxymethylcellulose layered with platinum nanoparticles/PAMAM dendrimer/magnetic nanoparticles hybrids. Application to the preparation of enzyme electrochemical biosensors, Sensors and Actuators B: Chemical, 232, 84–90. https://doi.org/10.1016/j.snb.2016.02.106
[31] Willinger, E., Tarasov, A., Blume, R., Rinaldi, A., Timpe, O., Massué, C., Scherzer, M., Noack, J., Schlögl, R., Willinger, M.G., 2017, Characterization of the Platinum-Carbon Interface for Electrochemical Applications, ACS Catalysis, 7(7), 4395–4407. https://doi.org/10.1021/acscatal.7b00614
[32] Liu, X., Chen, N., Han, B., Xiao, X., Chen, G., Djerdj, I., Wang, Y., 2015, Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH 3 detection with ultrahigh sensitivity, Nanoscale, 7, 14872–14880. https://doi.org/10.1039/C5NR03585F
[33] Gaikwad, N., Bhanoth, S., More, P.V., Jain, G.H., Khanna, P.K., 2014, Chemically designed Pt/PPy nano-composite for effective LPG gas sensor, Nanoscale, 6, 2746–2751. https://doi.org/10.1039/C3NR05375J
[34] Liu, L., Miao, P., Xu, Y., Tian, Z., Zou, Z., Li, G., 2010, Study of Pt/TiO2 nanocomposite for cancer-cell treatment, Journal of Photochemistry and Photobiology B: Biology, 98(3), 207–210. https://doi.org/10.1016/j.jphotobiol.2010.01.005
[35] Ding, Y., Wang, Y., Zhang, L., Zhang, H., Li, C.M., Lei, Y., 2011, Preparation of TiO2-Pt hybrid nanofibers and their application for sensitive hydrazine detection, Nanoscale, 3, 1149–1157. https://doi.org/10.1039/C0NR00773K
[36] Kasarevic-Popovic, Z., Behar, D., Rabani, J., 2004, Role of excess electrons in TiO2 nanoparticles coated with Pt in reduction reactions studied in radiolysis of aqueous solutions, The Journal of Physical Chemistry B, 108(52), 20291–20295. https://doi.org/10.1021/jp045989g
[37] Choi, J.-H., Park, K.-W., Kwon, B.-K., Sung, Y.-E., 2003, Methanol Oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni Anode Electrocatalysts at Different Temperatures for DMFCs, Journal of The Electrochemical Society, 150(7), A973-A978. https://doi.org/10.1149/1.1581011
[38] Chang, L.Y., Lee, C.P., Huang, K.C., Wang, Y.C., Yeh, M.H., Lin, J.J., Ho, K.C., 2012, Facile fabrication of PtNP/MWCNT nanohybrid films for flexible counter electrode in dye-sensitized solar cells, Journal of Materials Chemistry, 22, 3185–3191. https://doi.org/10.1039/C2JM15614H
[39] Chen, J.S., Zhu, T., Yang, X.H., Yang, H.G., Lou, X.W., 2010, Top-down fabrication of α-Fe2O3 single-crystal nanodiscs and microparticles with tunable porosity for largely improved lithium storage properties, Journal of the American Chemical Society, 132(38), 13162–13164. https://doi.org/10.1021/ja1060438
[40] Zheng, L., Xiong, L., Sun, J., Li, J., Yang, S., Xia, J., 2008, Capping agent free synthesis of PtSn bimetallic nanoparticles with enhanced electrocatalytic activity and lifetime over methanol oxidation, Catalysis Communications, 9(5), 624–629. https://doi.org/10.1016/j.catcom.2007.06.017
[41] Razmi, H., Mohammad-Rezaei, R., 2013, Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: Application to sensitive glucose determination, Biosensors and Bioelectronics, 41, 498–504. https://doi.org/10.1016/j.bios.2012.09.009
[42] Laviron, E., 1979, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 101(1), 19–28. https://doi.org/10.1016/S0022-0728(79)80075-3
[43] Geno, P.W., Ravichandran, K., Baldwin, R.P., 1985, Chemically modified carbon paste electrodes. Part IV. Electrostatic binding and electrocatalysis at poly(4-vinylpyridine)-containing electrodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 183(1-2), 155–166. https://doi.org/10.1016/0368-1874(85)85488-5
[44] Bard, A.J., Faulkner, L.R., 2001, Electrochemical Methods: Fundamentals and applications, 2nd Edition. John Wiley & Sons, Inc.,
[45] Hjemdahl, P., Martinsson, A., Larsson, K., 1986, Improvement of the isoprenaline infusion test by plasma concentration measurements, Life sciences, 39(7), 629–635. https://doi.org/10.1016/0024-3205(86)90044-5
[46] Kishore, P., Rajnarayana, K., Reddy, M.S., Sagar, J.V., Krishna, D.R., 2003, Validated high performance liquid chromatographic method for simultaneous determination of phenytoin, phenobarbital and carbamazepine in human serum, Arzneimittelforschung, 53(11), 763–768. https://doi.org/10.1055/s-0031-1299826
[47] Franeta, J.T., Agbaba, D., Eric, S., Pavkov, S., Aleksic, M., Vladimirov, S., 2002, HPLC assay of acetylsalicylic acid, paracetamol, caffeine and phenobarbital in tablets, Il Farmaco, 57(9), 709–713. https://doi.org/10.1016/S0014-827X(02)01265-X