[1] Bidarian, V., Koohestanian, E., Omidvar, M., 2017. Dynamic modeling of hardness changes of aluminum nanostructure during the mechanical ball milling process, Journal of Particle Science and Technology, 3(1), 25-32. https://doi.org/10.22104/JPST.2017.1527.1047
[2] Omidvar, M., Koohestanian, E., Ramezani-Azghandi, O., 2016. Synthesis and Statistical Analysis of Changing Size of Nano-structured PbO2 during Mechanical Milling Using Taguchi Methodology, Journal of Particle Science & Technology, 2(1), 49-54. https://doi.org/10.22104/JPST.2016.391
[3] Aslibeiki, B., Kameli, P., 2020. Structural and magnetic properties of Co/Al2O3 cermet synthesized by mechanical ball milling, Ceramics International, 46(12), 20116-20121. https://doi.org/10.1016/j.ceramint.2020.05.086
[4] Basavegowda, N., Mishra, K., Lee, Y.R., 2017. Synthesis, characterization, and catalytic applications of hematite (α-Fe2O3) nanoparticles as reusable nanocatalyst, Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(2), 025017. https://doi.org/10.1088/2043-6254/aa6885
[5] Kefeni, K.K., Msagati, T.A.M., Nkambule, T.T.I., Mamba, B.B., 2018. Synthesis and application of hematite nanoparticles for acid mine drainage treatment, Journal of Environmental Chemical Engineering, 6(2), 1865-1874. https://doi.org/10.1016/j.jece.2018.02.037
[6] Rufus, A., Sreeju, N., Philip, D., 2016. Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications, RSC advances, 6(96), 94206-94217. https://doi.org/10.1039/C6RA20240C
[7] Al-Hakkani, M.F., Gouda, G.A., Hassan, S.H., 2021. A review of green methods for phyto-fabrication of hematite (α-Fe2O3) nanoparticles and their characterization, properties, and applications, Heliyon, 7(1). https://doi.org/10.1016/j.heliyon.2020.e05806
[8] Fouad, D.E., Zhang, C., Mekuria, T., Bi, D., Zaidi C., Shah A.H., 2019. Effects of sono-assisted modified precipitation on the crystallinity, size, morphology, and catalytic applications of hematite (α-Fe2O3) nanoparticles: A comparative study, Ultrasonics sonochemistry, 59, 104713. https://doi.org/10.1016/j.ultsonch.2019.104713
[9] Gerami, S.E., Pourmadadi, M., Fatoorehchi H., Yazdian, F., Rashedi, H., Nigjeh, M.N., 2021. Preparation of pH-sensitive chitosan/polyvinylpyrrolidone/α-Fe2O3 nanocomposite for drug delivery application: Emphasis on ameliorating restrictions, International Journal of Biological Macromolecules, 173, 409-420. https://doi.org/10.1016/j.ijbiomac.2021.01.067
[10] Mehdigholami, S., Koohestanian, E., 2023. Fe3O4@ SiO2/AEPTMS/Fe(OTf)3: An efficient superparamagnetic nanocatalyst for the protecting of alcohols. Journal of Particle Science and Technology, 9(1), 1-9. https://doi.org/10.22104/JPST.2023.6188.1224
[11] Nasiri, S., Rabiei, M., Palevicius, A., Janusas, G., Vilkauskas, A., Nutalapati, V., Monshi, A., 2023. Modified Scherrer equation to calculate crystal size by XRD with high accuracy, examples Fe2O3, TiO2 and V2O5, Nano Trends, 3, 100015. https://doi.org/10.1016/j.nwnano.2023.100015
[12] Pourghahramani, P., Altin, E., Mallembakam, M.R., Peukert, W., Forssberg, E., 2008. Microstructural characterization of hematite during wet and dry millings using Rietveld and XRD line profile analyses, Powder Technology, 186(1), 9-21. https://doi.org/10.1016/j.powtec.2007.10.027
[13] Lemine, O., 2009. Microstructural characterisation of nanoparticles using, XRD line profiles analysis, FE-SEM and FT-IR, Superlattices and Microstructures, 45(6), 576-582. https://doi.org/10.1016/j.spmi.2009.02.004
[14] Sourmail, T., 2005. Near equiatomic FeCo alloys: Constitution, mechanical and magnetic properties, Progress in Materials Science, 50(7), 816-880. https://doi.org/10.1016/j.pmatsci.2005.04.001
[15] McHenry, M.E., Willard, M.A., Laughlin, D.E., 1999. Amorphous and nanocrystalline materials for applications as soft magnets, Progress in Materials Science, 44(4), 291-433. https://doi.org/10.1016/S0079-6425(99)00002-X
[16] Simões, A., Cavalcante, L.S., Moura, F., Longo, E., Varela, J.A., 2011. Structure, ferroelectric/magnetoelectric properties and leakage current density of (Bi0.85Nd0.15)FeO3 thin films, Journal of Alloys and Compounds, 509(17): p. 5326-5335. https://doi.org/10.1016/j.jallcom.2011.02.030
[17] Tang, X., Sepehri-Amin, H., Ohkubo T., Hono, H., 2018. Suppression of non-oriented grains in Nd-Fe-B hot-deformed magnets by Nb doping, Scripta Materialia, 147, 108-113. https://doi.org/10.1016/j.scriptamat.2017.12.032
[18] Nagy, L., Williams, W., Tauxe, L., Muxworthy, A.R., 2019. From nano to micro: Evolution of magnetic domain structures in multidomain magnetite, Geochemistry, Geophysics, Geosystems, 20(6), 2907-2918. https://doi.org/10.1029/2019GC008319
[19] Herzer, G., 1990. Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets, Magnetics, IEEE Transactions on Magnetics, 26(5), 1397-1402. https://doi.org/10.1109/20.104389
[20] Comstock, R.L., Comstock, L.R., 1999. Introduction to magnetism and magnetic recording, 2nd Edition, Published by John Wiley, 487 pages.
[21] Cullity, B., Graham, C., 1972. Introduction to Magnetic Materials, 2nd Edition, Published by IEEE Press, MA: Addison-Wesley, 544 pages.
[22] Lee, B.H., Ahn, B.S., Kim, D.G., Oh, S.T., Jeon, H., Ahn, J., Kim, Y.D., 2003. Microstructure and magnetic properties of nanosized Fe–Co alloy powders synthesized by mechanochemical and mechanical alloying process, Materials Letters, 57(5), 1103-1107. https://doi.org/10.1016/S0167-577X(02)00938-2
[23] Schöbitz, M., 2021. Current-induced magnetic Bloch-point domain wall dynamics in cylindrical nanowires, Ph.D. thesis Department of Physic, Friedrich-Alexander-Universität (FAU), Erlangen-Nürnberg, Germany.