[1] Sabouri Shirazi, A. H., Jafari Nasr, M. R., Ghodrat, M., 2020. Effects of Temperature Differences in Optimization of Spiral Plate Heat Exchangers. Process Integration and Optimization for Sustainability, 4, 391–408. https://doi.org/10.1007/s41660-020-00128-5
[2] Pradeep Mohan Kumar, K., Vijayan, V., Suresh Kumar, B., Vivek, C. M., Dinesh, S., 2018. Computational Analysis and Optimization of Spiral Plate Heat Exchanger. Journal of Applied Fluid Mechanics, 11 (Special Issue), 121–128. https://doi.org/10.36884/jafm.11.SI.29428
[3] Azad, A. V., Amidpour, M., 2011. Economic Optimization of Shell and Tube Heat Exchanger Based on Constructal Theory. Energy, 36 (2), 1087–1096. https://doi.org/10.1016/j.energy.2010.11.041
[4] Moretta, A. A., 2010. Spiral Plate Heat Exchangers: Sizing Units for Cooling Non-Newtonian Slurries. Chemical Engineering, 117 (5), 44–49.
[5] Picón Núñez, M., Canizalez-Dávalos, G., Martínez-Rodríguez, G., Polley, G., 2007. Shortcut Design Approach for Spiral Heat Exchangers. Food and Bioproducts Processing, 85 (4), 322–327. https://doi.org/10.1205/fbp07040
[6] Kondahkar, G. E., Kapatkat, V. N., 2012. Performance Analysis of Spiral Tube Heat Exchanger Used in Oil Extraction System. International Journal of Modern Engineering Research, 2, 930–936.
[7] Naphon, P., 2007. Thermal Performance and Pressure Drop of the Helical-Coil Heat Exchangers with and without Helically Crimped Fins. International Communications in Heat and Mass Transfer, 34 (3), 321–330. https://doi.org/10.1016/j.icheatmasstransfer.2006.11.002
[8] Egner, M. W., Burmeister, L. C., 2005. Heat Transfer for Laminar Flow in Spiral Ducts of Rectangular Cross Section. Journal of Heat Transfer, 127 (3), 352–356. https://doi.org/10.1115/1.1834624
[9] Burmeister, L. C., 2006. Effectiveness of a Spiral-Plate Heat Exchanger with Equal Capacitance Rates. Journal of Heat Transfer, 128 (3), 295–301. https://doi.org/10.1115/1.2150839
[10] Rao, K. R., 2016. Optimal Synthesis of Shell and Tube Heat Exchangers. Ph.D. Thesis, Indian Institute of Science, Bangalore, India.
[11] Martin, H., 1992. Heat Exchangers. Hemisphere Publishing Corporation, pp.73–82.
[12] Ghodrati, M., Khorshidi, J., 2020. New Experimental Nusselt Number Correlation for Spiral Plate Heat Exchanger Optimized Using a Code. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 235 (5), 1142–1151. https://doi.org/10.1177/0957650920948296
[13] Wu, D., 2003. Geometrical Calculations for Spiral Heat Exchangers. Chemical Engineering & Technology, 26 (5), 592–598. https://doi.org/10.1002/ceat.200390091
[14] Fan, Y., Luo, L., Flamant, G., 2013. Design of Compact Heat Exchangers for Transfer Intensification. In: Heat and Mass Transfer Intensification and Shape Optimization, pp. 81–111. https://doi.org/10.1007/978-1-4471-4742-8_4
[15] Minton, P. E., 1970. Designing Spiral Heat Exchangers. Chemical Engineering, May (4), 103–112.
[16] Bes, T., 2001. Thermal Design of Spiral Heat Exchanger. International Journal of Heat Exchangers, 2.
[17] Bes, T., Poetzel, W., 1992. Distribution of Heat Flux Density in Spiral Heat Exchangers. International Journal of Heat and Mass Transfer, 35 (6), 1331–1347. https://doi.org/10.1016/0017-9310(92)90027-5
[18] Bes, T., Roetzel, W., 1998. Effectiveness of Spiral Heat Exchanger with Variable Overall Heat Transfer Coefficient. 7th International Symposium on Heat Exchange and Renewable Energy Sources.
[19] Bes, T., Rotzel, N., 1993. Thermal Theory of the Spiral Heat Exchanger. International Journal of Heat and Mass Transfer, 36 (3), 765–773. https://doi.org/10.1016/0017-9310(93)80043-2
[20] Červenka, B., Holubčík, M., Drga, J., Malcho, M., 2022. Modular Spiral Heat Exchanger Thermal Modelling. Energies, 12 (12), 5805. https://doi.org/10.3390/en12115805
[21] Jiang, H., Jiang, T., Tian, H., Wu, Q., Deng, C., Zhang, R., 2024. Heat Transfer Simulation and Structural Optimization of Spiral Heat Exchangers. Electronics, 13(23), 4639. https://doi.org/10.3390/electronics13234639
[22] Bidabadi, M., Sadaghiani, A.K., Vahdat Azad, A., 2013. Spiral Heat Exchanger Optimization Using Genetic Algorithm. Scientia Iranica, Transactions on Mechanical Engineering (B), 20(5), 1445-1454.
[23] Bidabadi, M., Sadighi Dizaji, H., & Ghasemiasl, R., 2020. A comprehensive analysis for second law attributes of spiral heat exchangers. Applied Thermal Engineering, 174, 115273. https://doi.org/10.1016/j.applthermaleng.2020.115273
[24] Rubenstein, D. A., Frame, M. D., 2022. Mass Transport and Heat Transfer in the Microcirculation. In: Biofluid Mechanics Book (3rd Edition), pp. 331–374.
[25] Anup Kumar, T., Sharma, N., Mohammad, M. N., Pradeep, B. T., Saichand, U., Vamsi, N. M., 2019. Optimization of Spiral Plate Heat Exchanger by Gradient Based Optimizer. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8 (6), 2278–3075.
[26] Patel, A., Boersma, B. J., Pecnik, R., 2016. The Influence of Near-wall Density and Viscosity Gradients on Turbulence in Channel Flows. Journal of Fluid Mechanics, 809, 793–820. https://doi.org/10.1017/jfm.2016.662
[27] Chowdhury, K., Linkmeyer, M., Bassiouny, K., 1990. Analytical Studies on the Temperature Distribution in Spiral Plate Heat Exchangers: Straightforward Design Formulae for Efficiency and Mean Temperature Difference. Chemical Engineering and Processing, 19, 183–190. https://doi.org/10.1016/0255-2701(84)80020-3
[28] Canizalez Dávalos, L., Murrieta Luna, E., Rodríguez Ángeles, M. A., Cruz Delgado, V. J., 2019. Designing Spiral Plate Heat Exchangers to Extend Its Service and Enhance the Thermal and Hydraulic Performance. In: Low-temperature Technologies Book, Edited Volume. https://doi.org/10.5772/intechopen.85345
[29] Zhao, C., Liu, B., Piao, S., Wang, X., et al., 2017. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates. Proceedings of the National Academy of Sciences of the United States of America, 114 (35), 9326–9331. https://doi.org/10.1073/pnas.1701762114
[30] Zhang, X., Wang, L., Zhang, Y., 2021. Performance Optimization of the Helical Heat Exchanger with Fin. Frontiers in Energy Research, 9, 789316. https://doi.org/10.3389/fenrg.2021.789316