[1] Rasul, M.G., Widianto, W., Mohanty. B., 2005. Assessment of the thermal performance and energy conservation opportunities of a cement industry in Indonesia, Applied Thermal Engineering, 25 (17-18), 2950-2965.
DOI: 10.1016/j.applthermaleng.2005.03.003.
[2]. Fergani, Z., Touil, D., Morosuk. T., 2016. Multi-criteria exergy-based optimization of an Organic Rankine Cycle for waste heat recovery in the cement industry, Energy Convers. Manag, 112, 81-90.
DOI: 10.1016/j.enconman.2015.12.083.
[3]. Ahamed. Ju., Madlool, N.A., Saidur, R., Shahinuddin, M.I., Kamyar, A., Masjuki. H.H., 2012. Assessment of energy and exergy efficiencies of a grate clinker cooling system through the optimization of its operational parameters, Energy, 46, 664-674,
http://dx.doi.org/10.1016/j.energy.2012.06.074.
[5]. Taweel, T., Sokolova, E., Sergeev, V., & Solovev, D., 2018. Energy and exergy analysis of clinker cooler in the cement industry. Paper presented at the IOP conference series: Materials Science and Engineering. DOI:10.1088/1757-899X/463/3/032101
[7]. Shao, W., Cui, Z., Wang, N., & Cheng, L., 2016. Numerical simulation of heat transfer process in cement grate cooler based on dynamic mesh technique. Science China Technological Sciences, 59 (7), 1065–1070.
https://doi.org/10.1007/s11431-016-6074-6.
[8]. Utlu, Z., Sogut, Z., Hepbasli, A., & Oktay, Z., 2006. Energy and exergy analyses of a raw mill in a cement production. Applied Thermal Engineering, 26 (17–18), 2479–2489.
https://doi.org/10.1016/j.applthermaleng.2005.11.016.
[9]. Atmaca, A., & Atmaca, N., 2016. Determination of correlation between specific energy consumption and vibration of a raw mill in cement industry. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A-Uygulamali Bilimler Ve Mühendislik, 17 (1), 209–219.
DOI:10.18038/btda.11251.
[10] Benhelal, E., Zahedi, G.H., Shamsaei, E., Bahadori, A., 2013. Global Strategies and Potentials to Curb CO
2 Emissions in Cement Industry, Journal of Cleaner Production, 51, 142-161.
https://doi.org/10.1016/j.jclepro.2012.10.049.
[11] Andrew R.M., 2018. Global CO2 Emissions from Cement Production, Ear. Sys. Sci. Data, 10 (1), 195-217.
[12] Andrew R.M., 2019. Global CO2 Emissions from Cement Production, Earth System Science Data, 11 (4), 1675-1710.
[13] Koohestanian, E., Shahraki, F., 2021. Review on Principles, Recent Progress, and Future Challenges for Oxy-Fuel Combustion CO2 Capture Using Compression and Purification Unit, Journal of Environmental Chemical Engineering, 9 (4), 105777.
https://doi.org/10.1016/j.jece.2021.105777.
[14] Koohestanian, E., Samimi, A., Mohebbi-Kalhori, D., Sadeghi, J., 2017. Sensitivity Analysis and Multi-Objective Optimization of CO
2CPU Process Using Response Surface Methodology, Energy, 122, 570-578.
https://doi.org/10.1016/j.energy.2017.01.129.
[15] Ströhle, J., Hofmann, C., Greco-Coppi, M., Bernd, E., 2021. CO2 Capture from Lime and Cement Plants Using an Indirectly Heated Carbonate Looping Process-the Anica Project, in TCCS-11. CO2 Capture, Transport, and Storage, 11th International Trondheim CCS Conference.
[16] Koohestanian, E., Sadeghi, J., Mohebbi-Kalhori, D., Shahraki, F., Samimi A., 2021. New Process Flowsheet for CO
2 Compression and Purification Unit; Dynamic Investigation and Control, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 40 (2), 593-604.
https://doi:10.30492/ijcce.2020.37779.
[17] Nie, S., Zhou, J., Yang, F., Lan, M., Li, J., Zhang, Z., Chen, Z., Xu, M., Li, H., Sanjayan, J.G. 2022. Analysis of Theoretical Carbon Dioxide Emissions from Cement Production: Methodology and Application, Journal of Cleaner Production, 334, 130270.
https://doi.org/10.1016/j.jclepro.2021.130270.
[18] Mansouri, S., Shahraki, F., Sadeghi, J., Koohestanian, E., Sardashti Birjandi, M.R., 2024. Experimental Investigation of Energy Consumption and CO
2 Emission in Cement Kiln in Effect of Replacement Natural Pozzolan by Method of Grinding Clinker and Pozzolan Separately, Iran. J. Chem. Chem. Eng. (IJCCE), 43, 1, 382-394.
10.30492/ijcce.2023.1999807.5956
[19] Mansouri, S., Shahraki. F., Sadeghi. J., Koohestanian. E., Sardashti Birjandi. M.R., 2024. Using Response Surface Methodology Approach to Modeling and Optimization of the Combustion Process in Cement Kiln, Chem. Eng. Technol, 47, 6, 875–886. DOI: 10.1002/ceat.202300224.
[20]. Xray Laboratory, Zabol Cement Industries Company, Hamgaman Tose'e S&B Holding.
[21]. Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M., 2016. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th Edition, John Wiley & Sons, ISBN: 978-1-118-91601,856 pages.
[23] Karichappan. T., Venkatachalam. S., Jeganathan. P.M., 2014. Optimization of electrocoagulation process to treat grey wastewater in batch mode using response surface methodology, Journal of Environmental Health Science and Engineering, 12, 29.
doi: 10.1186/2052-336X-12-29.
[24] Valipour. M, 2016. Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms, Meteorological Applications, 23, 91-100.
https://doi.org/10.1002/met.1533.
[25] Montgomery. D.C., Design and analysis of experiments, 2008, John Wiley & Sons.
[26] Valipour. M., Sefidkouhi. M.A.G., Eslamian. S., 2015. Surface irrigation simulation models: a review, International Journal of Hydrology Science and Technology, 5, 51-70.
https://doi.org/10.1504/IJHST.2015.069279.
[27] Chou. W.L., Wang. C.T., Chang. W.C., Chang.S.Y., 2010. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation, Journal of hazardous materials, 180, 217-224.
https://doi.org/10.1016/j.jhazmat.2010.04.017.
[28] Parkash Maran. J., Sivakumar. V., Thirugnanasambandham. K., Sridhar. R., 2013. Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L, Alexandria Engineering Journal, 52, 507-516.
https://doi.org/10.1016/j.aej.2013.06.007.